

Published on Web 08/31/2006

From Carbon Dioxide to Methane: Homogeneous Reduction of Carbon Dioxide with Hydrosilanes Catalyzed by Zirconium–Borane Complexes

Tsukasa Matsuo* and Hiroyuki Kawaguchi*

Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan

Received July 4, 2006; E-mail: tmatsu@ims.ac.jp; hkawa@ims.ac.jp

Carbon dioxide is the stable carbon end product of metabolism and other combustions, and it is an abundant yet low-value carbon source. This molecule would be very valuable as a renewable source if it were to be effectively transformed into reduced organic compounds under mild conditions.¹ However, thermodynamic stability of CO₂ has prevented its utilization in industrial chemical processes, and thus this represents a continuing scientific challenge. Here we show that CO₂ is catalytically converted into methane (CH₄) and siloxanes via bis(silyl)acetals with a mixture of a zirconium benzyl phenoxide complex and tris(pentafluorophenyl)borane (B(C₆F₅)₃). In addition, an appropriate choice of hydrosilane may lead to selective formation of the initial acetal product and isolation of polysiloxane materials.

$$CO_2 + 4Si - H \rightarrow CH_4 + 4Si - O$$
 (1)

The overall reaction stoichiometry described here proceeds as illustrated in eq 1. We have studied early transition metal complexes having phenoxide-based multidentate ligands to understand their reactivity toward small molecules such as dinitrogen and carbon monoxide.² As part of these investigations, we have begun to study activation of carbon dioxide. Synthetic systems capable of reducing CO₂ to CH₄ have been elusive, despite the wealth for precedent of metal complexes that undergo the conversion of CO₂ into a variety of organic products.^{3–5} Hydrosilation of the carbon–oxygen double bond is a mild method for reduction of carbonyl functions of organic compounds.⁶ Since the reaction is exothermic, the use of hydrosilanes in the reduction of CO₂ is very attractive. For example, the reactions of CO₂ with hydrosilanes mediated by late transition metal complexes have produced silyl formate and methoxide.^{7.8}

In a first set of experiments, we studied the catalytic activity of cationic zirconium benzyl complexes bearing phenoxide ligands (Chart 1) in the course of reducing CO₂ with PhMe₂SiH as the test substrate. The catalysts used in this study were synthesized by treatment of the dibenzyl complexes with $B(C_6F_5)_3$ in toluene.^{2,9} Reaction of (L^3)Zr(CH₂Ph)₂ with [Ph₃C][B(C₆F₅)₄] in toluene solution produced Ph₃CCH₂Ph and [(L^3)Zr(CH₂Ph)][B(C₆F₅)₄]. Since improved reactivity and yield were achieved through in situ generation of cationic species, subsequent experiments were performed by premixing the dibenzyl complexes and boranes prior to the addition of hydrosilanes and CO₂.

The results of the catalytic CO₂ reduction with PhMe₂SiH are depicted in Table 1. The reaction proceeded exothermically to form (PhMe₂Si)₂O. Performing the analogous reaction in benzene- d_6 in a NMR tube revealed the release of CH₄ as the byproduct. The resonance due to CH₄ was observed as singlet at 0.15 ppm in the ¹H NMR spectrum. Mono- and bisphenoxide ligands L¹ and L² gave zirconium complexes that preformed with low activity (entries 1 and 2) relative to the tridentate ligand L³. It is obvious from entries 4 and 5 that the combination of a zirconium complex with B(C₆F₅)₃ is responsible for this result. Thus, neither zirconium

Chart 1

Table 1. Reduction of CO2 with PhMe2SiH at Room Temperature

entry	catalyst (mol %) ^a	TOF (h ⁻¹)	TON ^b	yield (%) ^c	time (h)
1	$1/B(C_6F_5)_3(0.45)$	23	34	15	1.5
2	$2/B(C_6F_5)_3(0.42)$	31	46	19	1.5
3	$3/B(C_6F_5)_3(0.44)$	150	225	98	1.5
4^d	$3/[Ph_3C][B(C_6F_5)_4](1.8)$			0	1.5
5	$B(C_6F_5)_3(1.9)$			0	е

^{*a*} The Zr/B ratio = ca. 1. ^{*b*} TON and TOF are based on the zirconium complex per Si-H bond. ^{*c*} Isolated yields of (PhMe₂Si)₂O. ^{*d*} Conversion of PhMe₂SiH into Ph₂Me₂Si and Me₂SiH₂ was observed. ^{*e*} 3 days.

cationic species nor $B(C_6F_5)_3$ alone provided an active catalyst. The enhanced reactivity associated with the tridentate-phenoxide ligand made $(L^3)Zr(CH_2Ph)_2$ attractive for further study.

To obtain insight into the intervening processes in the reaction, isotopically enriched ¹³CO₂ (99 atom % ¹³C) was admitted into a resealable NMR tube containing a solution of (L³)Zr(CH₂Ph)₂, $B(C_6F_5)$, and Et_3SiH in benzene- d_6 at room temperature. When Et_3 -SiH is used as a hydrosilane, the reaction requires approximately one week for completion and is easily monitored by NMR spectroscopy (Figure 1). The reaction proceeded cleanly, during which time ¹³CO₂ and Et₃SiH were fully consumed. Monitoring the reaction by $^{13}\text{C}\{^1\text{H}\}$ NMR spectroscopy indicates the presence of bis(silyl)acetal¹³CH₂(OSiEt₃)₂ as a detectable intermediate. The resonance at 84.5 ppm due to ¹³CH₂(OSiEt₃)₂ grew to a maximum relative intensity over a period of about 7 h and then decreased as that at -4.4 ppm due to ¹³CH₄. It then continued to grow until, after about 1 week, it was the only resonance attributable to a ¹³Clabeled product. Additionally, in the absence of proton decoupling, the resonances due to ¹³CH₂(OSiEt₃)₂ and ¹³CH₄ split into a triplet and a quintet with a coupling constant of 161.5 and 125.6 Hz, respectively. This observation unambiguously confirms that the carbon atom of CH₄ originates from CO₂, and the source of its hydrogen atoms is added Et₃SiH.

The scope of reduction of CO_2 by various hydrosilanes was examined with $3/B(C_6F_5)_3$ as the catalyst (Table 2). The six hydrosilanes examined were shown to be effective for reduction of CO_2 to CH_4 , and the $3/B(C_6F_5)_3$ catalyst is sensitive to steric hindrance around the substrate Si-H bond. For example, triethylsilane reacted more slowly than diethylmethylsilane (entries 1 and 2), while bulkier triphenylsilane did react but required more catalyst and prolonged reaction time to give a mixture of $(Ph_3SiO)_2CH_2$ and $(Ph_3Si)_2O$ (entry 4). Primary and secondary silanes can also be employed. The reaction with diethylsilane produced a mixture

Figure 1. (A) ¹³C{¹H} NMR spectra showing conversion of ¹³CO₂ (Δ) to ¹³CH₂(OSiEt₃)₂ (\bullet) to ¹³CH₄ (\Box) using 1.5 mol % catalyst (L³)Zr(CH₂-Ph)₂/ B(C₆F₅)₃ at room temperature; (B) ¹³C NMR spectrum of the reaction mixture after 8 h at room temperature.

Table 2. Reduction of CO₂ with Hydrosilanes by $3/B(C_6F_5)_3$ at Room Temperature^a

entry	substrate	product	TOF (h^{-1})	TON ^b	yield (%) ^c	time (h)
1	Et ₂ MeSiH	(Et ₂ MeSi) ₂ O	7.3	211	93	29
2	Et ₃ SiH	(Et ₃ Si) ₂ O	1.1	180	93	162
3	Et ₃ SiH	(Et ₃ SiO) ₂ CH ₂	1.2	203	82	165
		(Et ₃ Si) ₂ O			11	
4	Ph ₃ SiH	(Ph ₃ SiO) ₂ CH ₂	0.13	50	64	384
		(Ph ₃ Si) ₂ O			28	
5	Et ₂ SiH ₂	$(Et_2SiO)_n$	0.57	108	45	189
6	Ph_2SiH_2	(Ph2HSi)2O	0.29	49	46	168
7	PhSiH ₃	$(PhSiO_{1.5})_n$	1.1	162	74	145

^{*a*} The Zr/B ratio = ca. 1, except for entries 2 (0.69) and 3 (1.96) (0.41 to $\sim 0.52 \text{ mol }\%$ (**L**³)Zr(CH₂Ph)₂/B(C₆F₅)₃ except for entry 4 (1.8 mol %)). ^{*b*} TON and TOF are based on the zirconium complex per Si-H bond. ^{*c*} Isolated yields of siloxane.

Scheme 1

of cyclic and linear siolxane oligomers $(\text{Et}_2\text{SiO})_n$ (n = 3-11, entry 5), and phenylsilane was transformed into a silsequioxane polymer (PhSiO_{1.5})_n ($M_w = 4220$, $M_w/M_n = 2.72$, entry 7). This result implies the possibility to prepare polysiloxane materials from hydrosilanes and CO₂. However, when diphenylsilane was used, the formation of (Ph₂HSi)₂O remarkably reduced the reactivity of its remaining Si-H bonds (entry 6).

A detailed mechanism for the overall catalytic process cannot yet be deduced, but an outline of a potential mechanism is provided in Scheme 1. First, the zirconium cationic complex forms the adduct with CO₂, because of the highly electrophilic character of the phenoxide-supported zirconium(IV) cationic species.¹⁰ In the absence of zirconium complexes, reduction of CO₂ is not observed, suggesting coordination of CO₂ to the Zr center prior to the actual reduction. This coordination might render the CO₂ reactive toward hydrosilation to yield the initial product CH₂(OSiR₃)₂. The nature of the counteranion is critical, because replacing [PhCH₂B(C₆F₅)₃]⁻ with [B(C₆F₅)₄]⁻ resulted in disproportionation of hydrosilane (entry 4 in Table 1). The [PhCH₂B(C₆F₅)₃]⁻ counterion seems to play important roles in the course of transformation of CO₂ and R₃SiH into CH₂(OSiR₃). The resulting bis(silyl)acetal is subsequently reduced by R₃SiH to CH₄ and (R₃Si)₂O. This final step was found to be facilitated by a catalytic amount of B(C₆F₅)₃ alone, and B(C₆F₅)₃ is known to act as an effective catalyst for hydrosilane reduction of a variety of aldehydes, ketones, esters, ethers, and alcohols.¹¹ The [PhCH₂B(C₆F₅)₃]⁻ counterion slowly decomposed during the reaction to generate B(C₆F₅)₃, as monitored by ¹⁹F NMR spectroscopy. It is noteworthy that the yield of bis(silyl)actal was increased with a (L³)Zr(CH₂Ph)₂/B(C₆F₅)₃ ratio equal to 1.96 to prevent the release of free B(C₆F₅)₃, whereas the use of excess B(C₆F₅)₃ promoted conversion of CH₂(OSiEt₃)₂ into CH₄ and (Et₃-Si)₂O (entries 2 and 3 in Table 2).

The method for catalytic reduction of CO_2 presented here offers some significant advantages, since it proceeds under mild conditions and permits complete reduction of CO_2 to CH_4 . Another curious aspect of this system is the formation of polysiloxane from CO_2 and hydrosilane in chemical CO_2 fixation. The present results are promising, but we note that catalytic activity will need to be improved and the long-term stability and performance of the catalyst demonstrated.

Acknowledgment. The authors acknowledge Institute for Molecular Science and the Ministry of Education, Culture, Sports, Science and Technology, Japan, for financial support for this research.

Supporting Information Available: Experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Marks, T. J.; et al. *Chem. Rev.* 2001, *101*, 953–996. (b) Olah, G. A. *Angew. Chem., Int. Ed.* 2005, *44*, 2636–2639.
- (2) (a) Kawaguchi, H.; Matsuo, T. Angew. Chem., Int. Ed. 2002, 41, 2792–2794.
 (b) Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2005, 127, 17198–17199.
- (3) (a) Jessop, P. G.; Joó, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425–2442. (b) Tanaka, K.; Ooyama, D. Coord. Chem. Rev. 2002, 226, 211–218. (b)Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 2759. (c) Gibson, D. H. Chem. Rev. 1996, 96, 2063–2096. (d) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259–272. (e) Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231–233. (f) Leitner, W. Angew. Chem., Int. Ed. Engl. 1996, 34, 2207–2221. (g) Tsai, J.-C.; Nicholas, K. M. J. Am. Chem. Soc. 1992, 114, 5117–5124. (h) Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 863–864. (i) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196–17197.
- (4) (a) Fisher, B.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361–7363.
 (b) Simón-Manso, E.; Kubiak, C. P. Organometallics 2005, 24, 96–102.
 (c) Miedaner, A.; Curtis, C. J.; Barkley, R. M.; DuBois, D. L. Inorg. Chem. 1994, 33, 5482–5490. (d) Nagao, H.; Mizukawa, T.; Tanaka, K. Inorg. Chem. 1994, 33, 3415–3420.
- (5) (a) Darensbourg, D. J.; Niezgoda, S. A.; Draper, J. D.; Reibenspies, J. H. J. Am. Chem. Soc. 1998, 120, 4690-4698. (b) Cohen, C. T.; Chu, T.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 10869-10878. (c) Aida, T.; Inoue, S. Acc. Chem. Res. 1996, 29, 39-48.
- (6) (a) Ojima, I. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989. (b) Marciniec, B. *Comprehensive Handbook on Hydrosilation*; Pergamon: New York, 1992.
- (7) (a) Jansen, A.; Pitter, S. J. Mol. Catal. A: Chem. 2004, 217, 41-45. (b) Eisenschmid, T. C.; Eisenberg, R.; Organometallics 1989, 8, 1822-1824.
 (c) Süss-Fink, G.; Reiner, J. J. Organomet. Chem. 1981, 221, C36-C38.
 (d) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213-214.
- (8) Reference 7a reported that the reaction of CO₂ with Et₃SiH using a catalytic amount of RuCl₃·nH₂O produced (Et₃Si)₂O, but formation of CH₄ was not confirmed.
- (9) (a) Latesky, S. L.; McMullen, A. K.; Niccolai, G. P.; Rothwell, I. P. Organometallics 1985, 4, 902–908. (b) Thorn, M. G.; Etheridge, Z. C.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1998, 17, 3636–3638.
 (10) Hill, M.; Wendt, O. F. Organometallics 2005, 24, 5772–5575.
- (10) Tilli, W., Wendt, O. P. Organometatics 2003, 24, 3772–3373. (11) (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. **1996**, 118, 9440–9441.
- (11) (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440–9441.
 (b) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179–6186.

JA0647250